Wykresy funkcji trygonometrycznych
Wykres funkcji \( f(x)=\sin{x} \)
Dziedzina | Zbiór wartości | Miejsce zerowe |
---|---|---|
\( x \in \Bbb{R} \) | \( y \in [-1,1] \) | \( x=k\pi, k \in \Bbb{C} \) |
Funkcja sinus jest funkcją okresową, o okresie równym \( 2\pi \).
Wykres funkcji \( f(x)=\cos{x} \)
Dziedzina | Zbiór wartości | Miejsce zerowe |
---|---|---|
\( x \in \Bbb{R} \) | \( y \in [-1,1] \) | \( x= \frac{\pi}{2}+k\pi, k \in \Bbb{C} \) |
Funkcja cosinus jest funkcją okresową, o okresie równym \( 2\pi \).
Wykres funkcji \( f(x)=\text{tg}x \)
Dziedzina | Zbiór wartości | Miejsce zerowe |
---|---|---|
\( x \in \Bbb{R} \setminus \{ x:x=\frac{\pi}{2}+k\pi,k \in \Bbb{C} \} \) | \( y \in \Bbb{R} \) | \( x= k\pi, k \in \Bbb{C} \) |
Funkcja tangens jest funkcją okresową, o okresie równym \( \pi \).
Wykres funkcji \( f(x)=\text{ctg}x \)
Dziedzina | Zbiór wartości | Miejsce zerowe |
---|---|---|
\( x \in \Bbb{R} \setminus \{ x:x=k\pi,k \in \Bbb{C} \} \) | \( y \in \Bbb{R} \) | \( x= \frac{\pi}{2}+k\pi, k \in \Bbb{C} \) |
Funkcja cotangens jest funkcją okresową, o okresie równym \( \pi \).
Zobacz Komentarze ( 0 )